5 References

Aitkenhead, M. J., & Black, H. I. (2018). Exploring the impact of different input data types on soil variable estimation using the ICRAF-ISRIC global soil spectral database. Applied Spectroscopy, 72(2), 188–198. doi:10.1177/0003702817739013
Ayres, E. (2019). Quantitative guidelines for establishing and operating soil archives. Soil Science Society of America Journal, 83(4), 973–981. doi:10.2136/sssaj2019.02.0050
Benedetti, F., & van Egmond, F. (2021). Global Soil Spectroscopy Assessment. Spectral soil data — Needs and capacities (p. 42). Rome, Italy: FAO. doi:10.4060/cb6265en
Böhner, J., Blaschke, T., & Montanarella, L. (2008). SAGA—seconds out, vol. 19. Hamburg, Germany: Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie.
Bremner, J. M. (1996). Nitrogen-total. In Methods of soil analysis: Part 3 chemical methods (Vol. 5, pp. 1085–1121). Wiley Online Library.
Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., … Wagner, W. (2019). SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations. Earth System Science Data, 11(4), 1583–1601. doi:10.5194/essd-11-1583-2019
Chang, C.-W., Laird, D., Mausbach, M. J., & Hurburgh Jr, C. R. (2001). Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal, 65(2), 480. doi:10.2136/sssaj2001.652480x
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., & others. (2015). Xgboost: extreme gradient boosting. CRAN R-Project. Retrieved from https://cran.r-project.org/package=xgboost
Demattê, J. A., Safanelli, J. L., Poppiel, R. R., Rizzo, R., Silvero, N. E. Q., Sousa Mendes, W. de, … others. (2020). Bare earth’s surface spectra as a proxy for soil resource monitoring. Scientific Reports, 10(1), 1–11. doi:10.1038/s41598-020-61408-1
Elrashidi, M., Hammer, D., Seybold, C., Engel, R., Burt, R., & Jones, P. (2007). Application of equivalent gypsum content to estimate potential subsidence of gypsiferous soils. Soil Science, 172(3), 209–224.
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01
Garrett, L. G., Sanderman, J., Palmer, D. J., Dean, F., Patel, S., Bridson, J. H., & Carlin, T. (2022). Mid-infrared spectroscopy for planted forest soil and foliage nutrition predictions, new zealand case study. Trees, Forests and People, 8, 100280. doi:10.1016/j.tfp.2022.100280
Garrity, D., & Bindraban, P. (2004). A globally distributed soil spectral library visible near infrared diffuse reflectance spectra. Nairobi, Kenya: ICRAF (World Agroforestry Centre) / ISRIC (World Soil Information) Spectral Library. Retrieved from https://doi.org/10.34725/DVN/MFHA9C
Grossman, R., & Reinsch, T. (2002). 2.1 bulk density and linear extensibility. In Methods of soil analysis: Part 4 physical methods (Vol. 5, pp. 201–228). Wiley Online Library.
Helling, C. S., Chesters, G., & Corey, R. (1964). Contribution of organic matter and clay to soil cation-exchange capacity as affected by the pH of the saturating solution. Soil Science Society of America Journal, 28(4), 517–520.
Hengl, T., Miller, M. A., Križan, J., Shepherd, K. D., Sila, A., Kilibarda, M., … others. (2021). African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Scientific Reports, 11(1), 1–18. doi:10.1038/s41598-021-85639-y
Hong, Y., Munnaf, M. A., Guerrero, A., Chen, S., Liu, Y., Shi, Z., & Mouazen, A. M. (2022). Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon. Soil and Tillage Research, 217, 105284. doi:10.1016/j.still.2021.105284
Jensen, J., Christensen, B., Schjønning, P., Watts, C., & Munkholm, L. (2018). Converting loss-on-ignition to organic carbon content in arable topsoil: Pitfalls and proposed procedure. European Journal of Soil Science, 69(4), 604–612. doi:10.1111/ejss.12558
Kuhn, M., Weston, S., Keefer, C., & Coulter, N. (2012). Cubist models for regression. CRAN R-Project. Retrieved from https://cran.r-project.org/package=Cubist
Lei, T., & Sun, D.-W. (2022). Achieving joint calibration of soil vis-NIR spectra across instruments, soil types and properties by an attention-based spectra encoding-spectra/property decoding architecture. Geoderma, 405, 115449. doi:10.1016/j.geoderma.2021.115449
Loeppert, R. H., Suarez, D. L., & others. (1996). Carbonate and gypsum. In Methods of soil analysis. Part 3 chemical methods (Vol. 3, pp. 437–474). Wiley Online Library.
McLean, E. (1983). Soil pH and lime requirement. In Methods of soil analysis: Part 2 chemical and microbiological properties (Vol. 9, pp. 199–224). Wiley Online Library.
Miller, R. O., & Kissel, D. E. (2010). Comparison of soil pH methods on soils of North America. Soil Science Society of America Journal, 74(1), 310–316. doi:10.2136/sssaj2008.0047
Nelson, D., & Sommers, L. (1983). Total carbon, organic carbon, and organic matter. In Methods of soil analysis: Part 2 chemical and microbiological properties (Vol. 9, pp. 539–579). Wiley Online Library.
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. doi:10.1111/ejss.12499
Sanderman, J., Savage, K., & Dangal, S. R. (2020). Mid-infrared spectroscopy for prediction of soil health indicators in the United States. Soil Science Society of America Journal, 84(1), 251–261. doi:10.1002/saj2.20009
Schiedung, M., Bellè, S.-L., Malhotra, A., & Abiven, S. (2022). Organic carbon stocks, quality and prediction in permafrost-affected forest soils in north canada. CATENA, 213, 106194. doi:10.1016/j.catena.2022.106194
Summerauer, L., Baumann, P., Ramirez-Lopez, L., Barthel, M., Bauters, M., Bukombe, B., … Six, J. (2021). The central african soil spectral library: A new soil infrared repository and a geographical prediction analysis. SOIL, 7(2), 693–715. doi:10.5194/soil-7-693-2021
Sumner, M. E., & Miller, W. P. (1996). Cation exchange capacity and exchange coefficients. In Methods of soil analysis: Part 3 chemical methods (Vol. 5, pp. 1201–1229). Wiley Online Library.
Testing, A. S. for, Soils, Materials. C. D. on, Rock, Testing, A. S. for, Identification, Materials. S. D18. 07. on, Soils, C. of, & International, A. (2006). Standard practice for description and identification of soils (visual-manual procedure). Philadelphia, PA: ASTM International.
Thomas, G. (1982). Exchangeable cations. P. 159–165. AL page et al.(ed.) Methods of soil analysis. Part 2. Agron. Monogr. 9. ASA and SSSA. In Exchangeable cations. P. 159–165. In AL page et al.(ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. Madison, WI: ASA; SSSA.
USDA NRCS. (2019). Soil survey field and laboratory methods manual - soil survey investigations report no. 51 (version 2) issued 2014. Lincoln, Nebraska: U.S. Department of Agriculture, Natural Resources Conservation Service.
Vagen, T.-G., Winowiecki, L. A., Desta, L., Tondoh, E. J., Weullow, E., Shepherd, K., & Sila, A. (2020). Mid-Infrared Spectra (MIRS) from ICRAF Soil and Plant Spectroscopy Laboratory: Africa Soil Information Service (AfSIS) Phase I 2009-2013. World Agroforestry - Research Data Repository. doi:10.34725/DVN/QXCWP1
Vohland, M., Ludwig, B., Seidel, M., & Hutengs, C. (2022). Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches. Geoderma, 405, 115426. doi:10.1016/j.geoderma.2021.115426
Wadoux, A. M. J. C., Malone, B., McBratney, A. B., Fajardo, M., & Minasny, B. (2021). Soil Spectral Inference with R: Analysing Digital Soil Spectra Using the R Programming Environment. Springer International Publishing.
Wijewardane, N. K., Ge, Y., Wills, S., & Libohova, Z. (2018). Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library. Soil Science Society of America Journal, 82(3), 722–731. doi:10.2136/sssaj2017.10.0361
Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01