7 References
Aitkenhead, M. J., & Black, H. I. (2018). Exploring the impact of different input data types on soil variable estimation using the ICRAF-ISRIC global soil spectral database. Applied Spectroscopy, 72(2), 188–198. doi:10.1177/0003702817739013
Benedetti, F., & van Egmond, F. (2021). Global Soil Spectroscopy Assessment. Spectral soil data — Needs and capacities (p. 42). Rome, Italy: FAO. doi:10.4060/cb6265en
Brocca, L., Filippucci, P., Hahn, S., Ciabatta, L., Massari, C., Camici, S., … Wagner, W. (2019). SM2RAIN–ASCAT (2007–2018): global daily satellite rainfall data from ASCAT soil moisture observations. Earth System Science Data, 11(4), 1583–1601. doi:10.5194/essd-11-1583-2019
Chang, C.-W., Laird, D., Mausbach, M. J., & Hurburgh Jr, C. R. (2001). Near-infrared reflectance spectroscopy–principal components regression analyses of soil properties. Soil Science Society of America Journal, 65(2), 480. doi:10.2136/sssaj2001.652480x
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H., et al. (2015). Xgboost: extreme gradient boosting. CRAN R-Project. Retrieved from https://cran.r-project.org/package=xgboost
Demattê, J. A., Safanelli, J. L., Poppiel, R. R., Rizzo, R., Silvero, N. E. Q., Sousa Mendes, W. de, et al.others. (2020). Bare earth’s surface spectra as a proxy for soil resource monitoring. Scientific Reports, 10(1), 1–11. doi:10.1038/s41598-020-61408-1
Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. doi:10.18637/jss.v033.i01
Garrett, L. G., Sanderman, J., Palmer, D. J., Dean, F., Patel, S., Bridson, J. H., & Carlin, T. (2022). Mid-infrared spectroscopy for planted forest soil and foliage nutrition predictions, new zealand case study. Trees, Forests and People, 8, 100280. doi:10.1016/j.tfp.2022.100280
Garrity, D., & Bindraban, P. (2004). A globally distributed soil spectral library visible near infrared diffuse reflectance spectra. Nairobi, Kenya: ICRAF (World Agroforestry Centre) / ISRIC (World Soil Information) Spectral Library. Retrieved from https://doi.org/10.34725/DVN/MFHA9C
Hengl, T., Miller, M. A., Križan, J., Shepherd, K. D., Sila, A., Kilibarda, M., et al.others. (2021). African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Scientific Reports, 11(1), 1–18. doi:10.1038/s41598-021-85639-y
Hong, Y., Munnaf, M. A., Guerrero, A., Chen, S., Liu, Y., Shi, Z., & Mouazen, A. M. (2022). Fusion of visible-to-near-infrared and mid-infrared spectroscopy to estimate soil organic carbon. Soil and Tillage Research, 217, 105284. doi:10.1016/j.still.2021.105284
Jović, B., Ćirić, V., Kovačević, M., Šeremešić, S., & Kordić, B. (2019). Empirical equation for preliminary assessment of soil texture. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206, 506–511. doi:10.1016/j.saa.2018.08.039
Kuhn, M., Weston, S., Keefer, C., & Coulter, N. (2012). Cubist models for regression. CRAN R-Project. Retrieved from https://cran.r-project.org/package=Cubist
Lei, T., & Sun, D.-W. (2022). Achieving joint calibration of soil vis-NIR spectra across instruments, soil types and properties by an attention-based spectra encoding-spectra/property decoding architecture. Geoderma, 405, 115449. doi:10.1016/j.geoderma.2021.115449
Orgiazzi, A., Ballabio, C., Panagos, P., Jones, A., & Fernández-Ugalde, O. (2018). LUCAS Soil, the largest expandable soil dataset for Europe: a review. European Journal of Soil Science, 69(1), 140–153. doi:10.1111/ejss.12499
Sanderman, J., Savage, K., & Dangal, S. R. (2020). Mid-infrared spectroscopy for prediction of soil health indicators in the United States. Soil Science Society of America Journal, 84(1), 251–261. doi:10.1002/saj2.20009
Schiedung, M., Bellè, S.-L., Malhotra, A., & Abiven, S. (2022). Organic carbon stocks, quality and prediction in permafrost-affected forest soils in north canada. CATENA, 213, 106194. doi:10.1016/j.catena.2022.106194
Summerauer, L., Baumann, P., Ramirez-Lopez, L., Barthel, M., Bauters, M., Bukombe, B., … Six, J. (2021). The central african soil spectral library: A new soil infrared repository and a geographical prediction analysis. SOIL, 7(2), 693–715. doi:10.5194/soil-7-693-2021
Vagen, T.-G., Winowiecki, L. A., Desta, L., Tondoh, E. J., Weullow, E., Shepherd, K., & Sila, A. (2020). Mid-Infrared Spectra (MIRS) from ICRAF Soil and Plant Spectroscopy Laboratory: Africa Soil Information Service (AfSIS) Phase I 2009-2013. World Agroforestry - Research Data Repository. doi:10.34725/DVN/QXCWP1
Vohland, M., Ludwig, B., Seidel, M., & Hutengs, C. (2022). Quantification of soil organic carbon at regional scale: Benefits of fusing vis-NIR and MIR diffuse reflectance data are greater for in situ than for laboratory-based modelling approaches. Geoderma, 405, 115426. doi:10.1016/j.geoderma.2021.115426
Wadoux, A. M. J. C., Malone, B., McBratney, A. B., Fajardo, M., & Minasny, B. (2021). Soil Spectral Inference with R: Analysing Digital Soil Spectra Using the R Programming Environment. Springer International Publishing.
Wijewardane, N. K., Ge, Y., Wills, S., & Libohova, Z. (2018). Predicting physical and chemical properties of US soils with a mid-infrared reflectance spectral library. Soil Science Society of America Journal, 82(3), 722–731. doi:10.2136/sssaj2017.10.0361
Wright, M. N., & Ziegler, A. (2017). ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1), 1–17. doi:10.18637/jss.v077.i01