ossl-manual

Database description

::: {.rmdnote} You are reading the work-in-progress of the SoilSpec4GG manual. This chapter is currently draft version, a peer-review publication is pending. :::

The following subsections provide the OSSL variable names, types, description, and example. You can also find all this information in tabular format:

Soil site data

dataset.code_ascii_txt

id.layer_uuid_txt

id.layer_local_c

longitude.point_wgs84_dd

latitude.point_wgs84_dd

layer.sequence_usda_uint16

layer.upper.depth_usda_cm

layer.lower.depth_usda_cm

observation.date.begin_iso.8601_yyyy.mm.dd

observation.date.end_iso.8601_yyyy.mm.dd

surveyor.title_utf8_txt

id.project_ascii_txt

id.location_olc_txt

layer.texture_usda_txt

pedon.taxa_usda_txt

horizon.designation_usda_txt

longitude.county_wgs84_dd

latitude.county_wgs84_dd

location.point.error_any_m

location.country_iso.3166_txt

observation.ogc.schema.title_ogc_txt

observation.ogc.schema_idn_url

surveyor.contact_ietf_email

surveyor.address_utf8_txt

dataset.title_utf8_txt

dataset.owner_utf8_txt

dataset.address_idn_url

dataset.doi_idf_url

dataset.license.title_ascii_txt

dataset.license.address_idn_url

dataset.contact.name_utf8_txt

dataset.contact_ietf_email

id.dataset.site_ascii_txt

Soil laboratory (wet chemistry) data

dataset.code_ascii_txt

id.layer_uuid_txt

acidity_usda.a795_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L1_acidity_usda.a795_cmolc.kg.png” heigth=100% width=100%>

aggstb_usda.a1_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_aggstb_usda.a1_w.pct.png” heigth=100% width=100%>

al.dith_usda.a65_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_al.dith_usda.a65_w.pct.png” heigth=100% width=100%>

al.ext_aquaregia_g.kg

<img src=”./heatmap_v1.2/heatmap_L1_al.ext_aquaregia_g.kg.png” heigth=100% width=100%>

al.ext_usda.a1056_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_al.ext_usda.a1056_mg.kg.png” heigth=100% width=100%>

al.ext_usda.a69_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L1_al.ext_usda.a69_cmolc.kg.png” heigth=100% width=100%>

al.ox_usda.a59_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_al.ox_usda.a59_w.pct.png” heigth=100% width=100%>

awc.33.1500kPa_usda.c80_w.frac

<img src=”./heatmap_v1.2/heatmap_L1_awc.33.1500kPa_usda.c80_w.frac.png” heigth=100% width=100%>

b.ext_mel3_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_b.ext_mel3_mg.kg.png” heigth=100% width=100%>

bd_iso.11272_g.cm3

<img src=”./heatmap_v1.2/heatmap_L0_bd_iso.11272_g.cm3.png” heigth=100% width=100%>

bd_usda.a21_g.cm3

<img src=”./heatmap_v1.2/heatmap_L0_bd_usda.a21_g.cm3.png” heigth=100% width=100%>

bd_usda.a4_g.cm3

<img src=”./heatmap_v1.2/heatmap_L1_bd_usda.a4_g.cm3.png” heigth=100% width=100%>

c.tot_iso.10694_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_c.tot_iso.10694_w.pct.png” heigth=100% width=100%>

c.tot_usda.a622_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_c.tot_usda.a622_w.pct.png” heigth=100% width=100%>

ca.ext_aquaregia_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_ca.ext_aquaregia_mg.kg.png” heigth=100% width=100%>

ca.ext_usda.a1059_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_ca.ext_usda.a1059_mg.kg.png” heigth=100% width=100%>

ca.ext_usda.a722_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L1_ca.ext_usda.a722_cmolc.kg.png” heigth=100% width=100%>

caco3_iso.10693_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_caco3_iso.10693_w.pct.png” heigth=100% width=100%>

caco3_usda.a54_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_caco3_usda.a54_w.pct.png” heigth=100% width=100%>

cec_iso.11260_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L0_cec_iso.11260_cmolc.kg.png” heigth=100% width=100%>

cec_usda.a723_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L1_cec_usda.a723_cmolc.kg.png” heigth=100% width=100%>

cf_iso.11464_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_cf_iso.11464_w.pct.png” heigth=100% width=100%>

cf_usda.c236_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_cf_usda.c236_w.pct.png” heigth=100% width=100%>

clay.tot_iso.11277_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_clay.tot_iso.11277_w.pct.png” heigth=100% width=100%>

clay.tot_usda.a334_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_clay.tot_usda.a334_w.pct.png” heigth=100% width=100%>

cu.ext_usda.a1063_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_cu.ext_usda.a1063_mg.kg.png” heigth=100% width=100%>

ec_iso.11265_ds.m

<img src=”./heatmap_v1.2/heatmap_L0_ec_iso.11265_ds.m.png” heigth=100% width=100%>

ec_usda.a364_ds.m

<img src=”./heatmap_v1.2/heatmap_L1_ec_usda.a364_ds.m.png” heigth=100% width=100%>

efferv_usda.a479_class

fe.dith_usda.a66_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_fe.dith_usda.a66_w.pct.png” heigth=100% width=100%>

fe.ext_aquaregia_g.kg

<img src=”./heatmap_v1.2/heatmap_L1_fe.ext_aquaregia_g.kg.png” heigth=100% width=100%>

fe.ext_usda.a1064_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_fe.ext_usda.a1064_mg.kg.png” heigth=100% width=100%>

fe.ox_usda.a60_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_fe.ox_usda.a60_w.pct.png” heigth=100% width=100%>

k.ext_aquaregia_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_k.ext_aquaregia_mg.kg.png” heigth=100% width=100%>

k.ext_usda.a1065_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_k.ext_usda.a1065_mg.kg.png” heigth=100% width=100%>

k.ext_usda.a725_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L1_k.ext_usda.a725_cmolc.kg.png” heigth=100% width=100%>

mg.ext_aquaregia_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_mg.ext_aquaregia_mg.kg.png” heigth=100% width=100%>

mg.ext_usda.a1066_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_mg.ext_usda.a1066_mg.kg.png” heigth=100% width=100%>

mg.ext_usda.a724_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L1_mg.ext_usda.a724_cmolc.kg.png” heigth=100% width=100%>

mn.ext_aquaregia_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_mn.ext_aquaregia_mg.kg.png” heigth=100% width=100%>

mn.ext_usda.a1067_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_mn.ext_usda.a1067_mg.kg.png” heigth=100% width=100%>

mn.ext_usda.a70_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_mn.ext_usda.a70_mg.kg.png” heigth=100% width=100%>

n.tot_iso.11261_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_n.tot_iso.11261_w.pct.png” heigth=100% width=100%>

n.tot_iso.13878_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_n.tot_iso.13878_w.pct.png” heigth=100% width=100%>

n.tot_usda.a623_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_n.tot_usda.a623_w.pct.png” heigth=100% width=100%>

na.ext_aquaregia_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_na.ext_aquaregia_mg.kg.png” heigth=100% width=100%>

na.ext_usda.a1068_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_na.ext_usda.a1068_mg.kg.png” heigth=100% width=100%>

na.ext_usda.a726_cmolc.kg

<img src=”./heatmap_v1.2/heatmap_L1_na.ext_usda.a726_cmolc.kg.png” heigth=100% width=100%>

oc_iso.10694_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_oc_iso.10694_w.pct.png” heigth=100% width=100%>

oc_usda.c1059_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_oc_usda.c1059_w.pct.png” heigth=100% width=100%>

oc_usda.c729_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_oc_usda.c729_w.pct.png” heigth=100% width=100%>

p.ext_aquaregia_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_p.ext_aquaregia_mg.kg.png” heigth=100% width=100%>

p.ext_iso.11263_mg.kg

<img src=”./heatmap_v1.2/heatmap_L0_p.ext_iso.11263_mg.kg.png” heigth=100% width=100%>

p.ext_usda.a1070_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_p.ext_usda.a1070_mg.kg.png” heigth=100% width=100%>

p.ext_usda.a270_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_p.ext_usda.a270_mg.kg.png” heigth=100% width=100%>

p.ext_usda.a274_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_p.ext_usda.a274_mg.kg.png” heigth=100% width=100%>

p.ext_usda.a652_mg.kg

<img src=”./heatmap_v1.2/heatmap_L0_p.ext_usda.a652_mg.kg.png” heigth=100% width=100%>

ph.cacl2_iso.10390_index

<img src=”./heatmap_v1.2/heatmap_L0_ph.cacl2_iso.10390_index.png” heigth=100% width=100%>

ph.cacl2_usda.a477_index

<img src=”./heatmap_v1.2/heatmap_L0_ph.cacl2_usda.a477_index.png” heigth=100% width=100%>

ph.cacl2_usda.a481_index

<img src=”./heatmap_v1.2/heatmap_L1_ph.cacl2_usda.a481_index.png” heigth=100% width=100%>

ph.h2o_iso.10390_index

<img src=”./heatmap_v1.2/heatmap_L0_ph.h2o_iso.10390_index.png” heigth=100% width=100%>

ph.h2o_usda.a268_index

<img src=”./heatmap_v1.2/heatmap_L1_ph.h2o_usda.a268_index.png” heigth=100% width=100%>

s.ext_mel3_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_s.ext_mel3_mg.kg.png” heigth=100% width=100%>

s.tot_usda.a624_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_s.tot_usda.a624_w.pct.png” heigth=100% width=100%>

sand.tot_iso.11277_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_sand.tot_iso.11277_w.pct.png” heigth=100% width=100%>

sand.tot_usda.c405_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_sand.tot_usda.c405_w.pct.png” heigth=100% width=100%>

sand.tot_usda.c60_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_sand.tot_usda.c60_w.pct.png” heigth=100% width=100%>

silt.tot_iso.11277_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_silt.tot_iso.11277_w.pct.png” heigth=100% width=100%>

silt.tot_usda.c407_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_silt.tot_usda.c407_w.pct.png” heigth=100% width=100%>

silt.tot_usda.c62_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_silt.tot_usda.c62_w.pct.png” heigth=100% width=100%>

wr.10kPa_usda.a414_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_wr.10kPa_usda.a414_w.pct.png” heigth=100% width=100%>

wr.10kPa_usda.a8_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_wr.10kPa_usda.a8_w.pct.png” heigth=100% width=100%>

wr.1500kPa_usda.a417_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_wr.1500kPa_usda.a417_w.pct.png” heigth=100% width=100%>

wr.33kPa_usda.a415_w.pct

<img src=”./heatmap_v1.2/heatmap_L1_wr.33kPa_usda.a415_w.pct.png” heigth=100% width=100%>

wr.33kPa_usda.a9_w.pct

<img src=”./heatmap_v1.2/heatmap_L0_wr.33kPa_usda.a9_w.pct.png” heigth=100% width=100%>

zn.ext_usda.a1073_mg.kg

<img src=”./heatmap_v1.2/heatmap_L1_zn.ext_usda.a1073_mg.kg.png” heigth=100% width=100%>

MIR scans

Middle-infrared (MIR) spectra is provided in absorbance units per wavenumber, with values usually ranging between 0 and 3. The spectral range imported into the OSSL falls between 600 and 4000 cm-1, with an interval of 2 cm-1. All datasets are harmonized to this specification.

One can convert reflectance (R) values to absorbance units (A) as A = log10(1/R), or backtransform with R = 1/(10^A). Similarly, headers containing wavenumbers (WN, in cm-1) can be converted to wavelength (WL, in nm) with WL = 1/(WN/10000000), or backtransformed with WN = 1/(WL/10000000). The factor 10M is used to convert cm to nm.

id.layer_uuid_txt

id.scan_local_c

scan.mir.date.begin_iso.8601_yyyy.mm.dd

scan.mir.date.end_iso.8601_yyyy.mm.dd

scan.mir.model.name_utf8_txt

scan.mir.model.code_any_txt

scan.mir.method.optics_any_txt

scan.mir.method.preparation_any_txt

scan.mir.license.title_ascii_txt

scan.mir.license.address_idn_url

scan.mir.doi_idf_url

scan.mir.contact.name_utf8_txt

scan.mir.contact.email_ietf_txt

scan_mir.600_abs

scan_mir.4000_abs

VisNIR scans

Visible and Near-Infrared (VisNIR) spectra is provided in reflectance units per wavelength, with values usually ranging between 0 and 1 as fraction percent. The spectral range imported into the OSSL falls between 350 and 2500 nm, with an interval of 2 nm. All datasets are harmonized to this specification.

One can convert reflectance (R) values to absorbance units (A) as A = log10(1/R), or backtransform with R = 1/(10^A). Similarly, headers containing wavenumbers (WN, in cm-1) can be converted to wavelength (WL, in nm) with WL = 1/(WN/10000000), or backtransformed with WN = 1/(WL/10000000). The factor 10M is used to convert cm to nm.

id.layer_uuid_txt

id.scan_local_c

scan.visnir.date.begin_iso.8601_yyyy.mm.dd

scan.visnir.date.end_iso.8601_yyyy.mm.dd

scan.visnir.model.name_utf8_txt

scan.visnir.model.code_any_txt

scan.visnir.method.optics_any_txt

scan.visnir.method.preparation_any_txt

scan.visnir.license.title_ascii_txt

scan.visnir.license.address_idn_url

scan.visnir.doi_idf_url

scan.visnir.contact.name_utf8_txt

scan.visnir.contact.email_ietf_txt

scan_visnir.350_ref

scan_visnir.2500_ref